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Abstract

Alzheimer’s disease (AD) is an incurable neurodegenerative disease leading to
memory loss and cognitive decline, which currently affects 55 million people
worldwide [1]. In this project, we design and build pipelines for the training and
evaluation of deep learning models for AD diagnosis classification. We use magnetic
resonance imaging (MRI) scans from patients with different Alzheimer's disease
states, and design deep learning models to predict the disease state from the image.
We find that transfer learning remains a strong paradigm in image classification and
interpret the results of our fine-tuned model using the Integrated Gradients (IG)
technique.

Introduction

Alzheimer's disease (AD) is a neurodegenerative disease and common form of
dementia that results in memory loss and cognitive decline [1]. AD and dementia are
incurable and currently affect 55 million people worldwide [1]. This deep learning
research project is focused on the classification of Alzheimer's disease states. .

In this project, we use an Alzheimer’s MRI Pre-processed dataset from Kaggle
[2] containing 6400 images to predict Alzheimer’s disease state. Using this dataset,
we aim to apply a deep learning framework consisting of multiple machine learning
models to predict a patient’s Alzheimer’s disease state as Non Demented, Very Mild
Demented, Mild Demented, and Moderate demented. Our goal is to compare the
three models: a standard convolutional network (ConvNet), a fine-tuned
EfficientNetV2 architecture (Pre-trained ConvNet), and a Vision Transformer (ViT), to
determine which has the best performance for our prediction classification task, and
visualize the best model’'s learning using an integrated gradients approach to gain a
deeper understanding and explanation for the model's predictions.

Methods
Data Source
The original dataset we planned to use was obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI [3]). It contained brain imaging data (PET
scans and MRI images), genetic information, biospecimens, and clinical data, and we
planned to use a subset of PET scans and MRI images for 454 patients. After running
into significant issues with pre-processing the imaging data and applying masks to



the scans we decided to work with another dataset given the time and resource
constraints. The dataset we ultimately used in this project was a pre-processed data
set of Alzheimer's Images From Kaggle (originally sourced from ADNI) that
contained brain imaging data in the form of 2D axial MRI scans [2]. It contained 6400
preprocessed scans that were ready to be input into the model. This dataset contains
Jpg images of 4 classes: Mild Demented (896 images), Moderate demented (64
images), non-demented (3200 images), and very mild demented (2400 images). We
were able to download the dataset from Kaggle with no issues and immediately
begin working on the model architecture.

Preprocessing

We split the dataset into train, validation and test with a 70:20:10 ratio
respectively. Then, we applied several different pre-processing approaches for image
augmentation from the Keras preprocessing utilities. These include random rotations
with a factor of 0.05, random horizontal flips, random zooms with height and width
factors of 0.5, and anisotropic filtering to reduce noise and improve feature detection.
The goal of this image augmentation was to improve model performance while
limiting model overfitting.

Model Development

We iterated over several different model architectures built using Tensorflow
with different hyperparameters, which fall into three major categories. (1) We built
standard convolutional networks (ConvNet), which consisted of a sequence of
convolutional layers with batch normalization, pooling and an activation function,
followed by a multilayer perceptron (MLP) classifier with fully-connected layers with
dropout and a final softmax activation for multiclass prediction. (2) We used the
transfer learning paradigm and fine-tuned pretrained convolutional models
(PretrainedConvNet). The final pretrained model uses the EfficientNet-V2
architecture [4] with weights from ImageNet large-scale visual recognition challenge
[5], followed by two dense layers and a softmax activation. (3) Finally, we replicate the
Vision Transformer architecture (ViT) from Dosovistskiy et al. (2020) [6]. Models were
trained for a maximum of 50 epochs with early stopping to prevent overfitting, and
then evaluated for training and validation loss, accuracy and AUC. The O2 GPU
cluster was leveraged for model training to accelerate the process.

The proposed architectures will integrate the feature vectors from the
processed MRI scans for each patient. The MRI scans will be fed into the selected MRI
encoder, and then the learned feature vectors enter the neural network dense layers
for the given model, which will give the final four-class classification with a softmax
activation function (Fig. 2).
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Figure 1. Model Architecture for PretrainedConvNet leveraging EfficientNet V2.

Evaluation Metrics

All three models will be trained and evaluated based on training loss and
accuracy and validation loss and accuracy over epochs. Our goal is to find a model
that has high accuracy and low loss. We also create a confusion matrix of our model
results comparing true labels to predicted labels in order to better understand our
model weaknesses and potential class imbalances. The aim is to find a model that is
able to have high performance across all four classes in the data even though there
are class imbalances present in our training data.

Results
Due to issues with the original ADNI dataset, we had to pivot midway through
the project to a preprocessed version of the dataset from Kaggle. Therefore, some
preliminary work was done on the first dataset, which we will discuss in this report,
as such preliminary effort in the data curation and preprocessing informed our final
approach. However, the final results reported were derived from the Kaggle dataset.

Manual Data Curation and Labeling

Our preliminary results came from attempting to pre-process slice images of
3D MRI scans from the ADNI database. Scans contained a 3D representation of the
patient from neck upwards, and the brain had to be isolated from surrounding tissue.
We attempted to use multiple approaches to strip the skulls from the brain. Our first
approach using the fsl module in python was unsuccessful due to issues installing fsl.
The second approach using the python BrainExtractor package removed not only
the skull but also important parts of the brain that we would like to retain as signal,
while also keeping parts of the neck and throat, which would introduce noise if not



removed. In our last and successful attempt, we downloaded available masks from
the ADNI website for each image and multiplied each respective image by their
mask (Fig 2). A challenge here was that the masks and images have different sizes
and orientations, so we needed to manually try multiple alignments. Alignment
worked when we rotated the data to match the mask orientation, using Einstein
summation ijk -> jki, followed by flipping the x and y axes. This successfully retained
the brain while removing the skull, throat and neck (Fig 2).

Fig 2. Raw MRI image of 2D Alzheimer’s brain slice, (b) binary mask from ADNI
database applied to 2D brain slice and (3) preprocessed result of Alzheimer’s brain
in 3D

Despite this success, we later found that many of the brains in the ADNI
database were missing masks, and brains with masks had severe inconsistencies in
image and mask quality and size. At this point, we decided to switch to the
downsampled pre-processed dataset from Kaggle, which was the source of all our
following results.

Results and Performance

Our convolutional neural net (Fine-Tuned EfficientNet) created with pretrained
weights using ImageNet had the highest accuracy, outperforming both the custom
convolutional neural net (ConvNet) and Vision Transformer (ViT) across training,
validation and testing datasets (Table 1). The Fine-Tuned EfficientNet had a testing
accuracy of 096 followed by the ConvNet and Vision Transformer with testing
accuracies of 0.83 and 0.50 respectively.



m Validation accuracy | Testing Accuracy

Fine-Tuned 0.99509

0.96656 0.96057
EfficientNet
ConvNet 0.94643 0.82893 0.83438
Vision 0.50513 0.50544 0.50473
Transformer

Table 1. Training, validation and testing accuracy across 3 model architectures

In the Pretrained ConvNet (Fine-Tuned EfficientNet), accuracy increased as a
function of epochs in both trained and validation sets (Fig 3A), as the model learns.

For this model, it was also observed that loss decreases as a function of epochs in
training and validation sets (Fig 3B).
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Fig. 3 (A) Accuracy vs epochs and (B) loss vs epochs for the pretrainedConvNet.

We then created a confusion matrix of our highest performing Pretrained
ConvNet (Fine-Tuned EfficientNet). These results across training, validation and
testing sets can be seen in Figure 4. The model achieves high accuracy across all four
Alzheimer's disease stages, with low numbers of false positives in all categories.
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Figure 4. Confusion matrices for PretrainedConvNet on (A) training and (B) test sets.

Human Evaluation / Model Visualization

In order to test the robustness of our model, we use the Integrated Gradients
(IG) technique [7] from Sundararajan et al. to evaluate where the model was focusing
its attention the most to classify the images. After applying the IG map to a random
sample from the dataset, we obtain the following image

Fig 5. (A) Sample image from the dataset with AD and (B) Integrated Gradients (IG)
map showing relevant features for the model prediction. The intensity of the IG
represents the relevance of a given pixel in the model prediction. We see that IG

highlights medically relevant areas of the brain in orange, indicating high
importance.



IGs show that the model is focusing mainly on the white matter below the
parietal and prefrontal cortex to classify the patient but is also taking into account
the finer structures such as the gyri from the parietal and frontal lobes. As AD
evolves, a progressive thinning of the cortical gray matter is observed in MR,
together with a progressive loss of adjacent white matter. From this, we can
conclude that our model has learned the biologically relevant features of the disease.

Discussion
Interpretations

Overall, the Pretrained ConvNet (Fine-Tuned EfficientNet) performed best, and
was able to achieve a high accuracy on both training and testing data while retaining
a low loss. Furthermore, the confusion matrix indicates that the EfficientNet-V2
model generates highly accurate predictions on held-out data with accuracies
ranging from 84.27-99.37%. This indicates that the model is also able to maintain
high accuracy across all class labels.

The high accuracy of the fine-tuned EfficientNet highlights the strengths of
transfer learning for medical diagnostic tasks. Although the ConvNet model, trained
from scratch, achieves high accuracy and AUC scores, it is far outperformed by the
pretrained architecture.

The VIT model was trained from scratch, with no pretrained architecture,
which might explain its comparatively low performance when considered alongside
the low number of samples in our dataset and the fact that transformer
architectures are data-intensive. Another possible explanation is that the VIiT model
was underparameterized, due to our memory constraints when building and training
models.

Having computed the integrated gradients technique for model
interpretation, it is observed that the model is learning relevant features for its
prediction tasks, and thus producing sensible image classifications. Ultimately, we
were able to achieve our goals of training and selecting a deep learning model to
make predictions of Alzheimer's disease state given a brain MRI scan. This has
potential clinical implications for providing decision classification support for
Alzheimer's diagnosis, but due to limitations in time and resources the model should
undergo further training, fine-tuning, and validation to ensure its generalizability to a
more diverse MRI scan collection.

Limitations

The study was limited in the number and quality of images. Even though we
apply data augmentation to the images, which can assist with accuracy and
generalizability, training the model with more images could help improve accuracy
and generalizability even more. Additionally, the images were small in size, and a



larger image with higher clarity (more pixels) could provide the model with more
information for better learning and improve generalization. Adding supplemental
information such as genetic data, prior health data, or family history could also assist
the model in making stronger predictions and increase its ability to generalize to
more diverse data types and cases. Furthermore, ensuring more balanced classes
and providing more disease subtypes to the model could further enhance
performance and potential for use in a clinical setting.

A significant limitation of the model is that it only operates on 2D image slices,
and thus it may struggle to perform well at classifying patients that have minimal
disease onset. Therefore, a model that can process and classify 3D images of the
brain may lead to better performance in these fringe cases since more information
can be extracted from entire brain scans.

Challenges

Initially we faced significant challenges obtaining access to the neuroimaging
database. This stunted our ability to begin training and fine-tuning the model. We
only received access to the dataset two weeks prior to the project deadline. Once we
were finally able to gain access to the ADNI dataset, we had challenges with the
number of images available and the state of the images. The dataset contained too
many images for us to handle (the whole dataset is 85 GB) and the images were raw
scans, so we ran into many issues when attempting to preprocess the images.
Ultimately, a week prior to the project deadline, we were able to find a different MRI
brain scan dataset on Kaggle that was sourced from ADNI which contained
preprocessed images in a smaller format. This was much more usable given the time
and resource restraints for this project, so we proceeded with this dataset.

Future Directions

AD diagnosis is not a trivial task, requiring first a psychometric test such as
mini-mental state examination (MMSE), then to rule out reversible causes of
dementia such as vitamin Bl deficiency through blood analyses, but finally it requires
highly trained neuroimaging experts to accurately confirm the suspected diagnosis
through MRI and PET imaging [8]. Though MRIs are widespread in the world,
neuroimaging subspecialists are expensive and scarce. In this project, we aim to
develop a tool capable of diagnosing AD in MRI images with the accuracy compared
to that of an expert. Furthermore we challenge our model to classify the stage of AD
in each image, in the hope that the model can detect gradual changes and patterns
within the pathology. By achieving this, we hope to expand our model in the future
and train it to be able to classify different forms of dementia such as frontotemporal
dementia or lewy body dementia, that have only mild variations in the cortical
degeneration pattern compared to AD. Though different dementias have similar



presentations, their pathophysiology is very different and would require different
treatments as well, making this tool very useful for future clinical purposes.

Further investigation of this model in foreign clinical scenarios like accounting
for varying levels of disease states will improve its generalizability, which will further
validate the model's clinical relevance. Given more time and computational
resources, we would like to establish a functional preprocessing pipeline for the
original dataset from ADNI and incorporate the MRI and PET scan data along with
additional genetic and clinical data in order to make (hopefully) robust predictions
among diverse types of pathologies beyond dementias, in the hope of providing the
world with a unified model that would aid in difficult neuroimaging diagnosis at a
low cost.

Despite the algorithm performing well with 2D slices of brain scans, it would
be pertinent to construct a model that can process and classify 3D images.
Predictions from a 3D model will likely be more suitable for use in a clinical setting
since it can identify the onset of the disease in parts of the brain that a 2D slice may
not capture. Naturally, this will improve the model's generalizability to perform well in
foreign clinical scenarios.
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Code availability
The source code used in this project can be found at the following GitHub
repository: https://github.com/dietrujillo/bmi707_alzheimers_mri_prediction
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